Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.535
Filtrar
1.
Naturwissenschaften ; 111(3): 27, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38652309

RESUMO

Re-evaluation of photographs of the tropical butterfly Morpho helenor from a previous study (Pignataro et al. 2023) revealed that its conclusion regarding increased wing fluctuating asymmetry in forest edge habitats compared to forest interior habitats could not be replicated. This discrepancy likely arises from (i) original measurements not being conducted blindly, (ii) insufficient photograph quality hindering accurate landmark selection, and (iii) a lack of detailed description of the measurement protocol. The likelihood of false positive discoveries within the published data concerning the impacts of environmental stress on the fluctuating asymmetry of plants and animals is probably higher than previously assumed.


Assuntos
Borboletas , Florestas , Borboletas/fisiologia , Borboletas/anatomia & histologia , Animais , Asas de Animais/anatomia & histologia , Asas de Animais/fisiologia , Ecossistema , Clima Tropical
2.
Science ; 383(6689): 1368-1373, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38513020

RESUMO

Visual preferences are important drivers of mate choice and sexual selection, but little is known of how they evolve at the genetic level. In this study, we took advantage of the diversity of bright warning patterns displayed by Heliconius butterflies, which are also used during mate choice. Combining behavioral, population genomic, and expression analyses, we show that two Heliconius species have evolved the same preferences for red patterns by exchanging genetic material through hybridization. Neural expression of regucalcin1 correlates with visual preference across populations, and disruption of regucalcin1 with CRISPR-Cas9 impairs courtship toward conspecific females, providing a direct link between gene and behavior. Our results support a role for hybridization during behavioral evolution and show how visually guided behaviors contributing to adaptation and speciation are encoded within the genome.


Assuntos
Borboletas , Proteínas de Ligação ao Cálcio , Visão de Cores , Genes de Insetos , Introgressão Genética , Preferência de Acasalamento Animal , Seleção Sexual , Animais , Feminino , Borboletas/genética , Borboletas/fisiologia , Proteínas de Ligação ao Cálcio/genética , Visão de Cores/genética , Genoma , Hibridização Genética , Seleção Sexual/genética
3.
J Chem Ecol ; 50(3-4): 152-167, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38353894

RESUMO

Host plant consumption and pathogen infection commonly influence insect traits related to development and immunity, which are ultimately reflected in the behavior and physiology of the insect. Herein, we explored changes in the metabolome of a generalist insect herbivore, Vanessa cardui (Lepidoptera: Nymphalidae), in response to both dietary variation and pathogen infection in order to gain insight into tritrophic interactions for insect metabolism and immunity. Caterpillars were reared on two different host plants, Plantago lanceolata (Plantaginaceae) and Taraxacum officinale (Asteraceae) and subjected to a viral infection by Junonia coenia densovirus (JcDV), along with assays to determine the insect immune response and development. Richness and diversity of plant and caterpillar metabolites were evaluated using a liquid chromatography-mass spectrometry approach and showed that viral infection induced changes to the chemical content of V. cardui hemolymph and frass dependent upon host plant consumption. Overall, the immune response as measured by phenoloxidase (PO) enzymatic activity was higher in individuals feeding on P. lanceolata compared with those feeding on T. officinale. Additionally, infection with JcDV caused suppression of PO activity, which was not host plant dependent. We conclude that viral infection combined with host plant consumption creates a unique chemical environment, particularly within the insect hemolymph. Whether and how these metabolites contribute to defense against viral infection is an open question in chemical ecology.


Assuntos
Herbivoria , Metaboloma , Taraxacum , Animais , Taraxacum/química , Taraxacum/metabolismo , Larva/virologia , Larva/fisiologia , Plantago/química , Plantago/fisiologia , Hemolinfa/metabolismo , Hemolinfa/química , Monofenol Mono-Oxigenase/metabolismo , Borboletas/fisiologia , Borboletas/virologia , Borboletas/imunologia
4.
Glob Chang Biol ; 30(2): e17205, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38403895

RESUMO

Global climate change has been identified as a potential driver of observed insect declines, yet in many regions, there are critical data gaps that make it difficult to assess how communities are responding to climate change. Poleward regions are of particular interest because warming is most rapid while biodiversity data are most sparse. Building on recent advances in occupancy modeling of presence-only data, we reconstructed 50 years (1970-2019) of butterfly occupancy trends in response to rising minimum temperatures in one of the most under-sampled regions of North America. Among 90 modeled species, we found that cold-adapted species are far more often in decline compared with their warm-adapted, more southernly distributed counterparts. Furthermore, in a post hoc analysis using species' traits, we find that species' range-wide average annual temperature is the only consistent predictor of occupancy changes. Species with warmer ranges were most likely to be increasing in occupancy. This trend results in the majority of butterflies increasing in occupancy probability over the last 50 years. Our results provide the first look at macroscale butterfly biodiversity shifts in high-latitude North America. These results highlight the potential of leveraging the wealth of presence-only data, the most abundant source of biodiversity data, for inferring changes in species distributions.


Assuntos
Borboletas , Animais , Borboletas/fisiologia , Temperatura , Biodiversidade , Mudança Climática , Regiões Árticas , Ecossistema
5.
BMC Plant Biol ; 24(1): 120, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38369495

RESUMO

BACKGROUND: Plants have acquired a repertoire of mechanisms to combat biotic stressors, which may vary depending on the feeding strategies of herbivores and the plant species. Hormonal regulation crucially modulates this malleable defense response. Jasmonic acid (JA) and salicylic acid (SA) stand out as pivotal regulators of defense, while other hormones like abscisic acid (ABA), ethylene (ET), gibberellic acid (GA) or auxin also play a role in modulating plant-pest interactions. The plant defense response has been described to elicit effects in distal tissues, whereby aboveground herbivory can influence belowground response, and vice versa. This impact on distal tissues may be contingent upon the feeding guild, even affecting both the recovery of infested tissues and those that have not suffered active infestation. RESULTS: To study how phytophagous with distinct feeding strategies may differently trigger the plant defense response during and after infestation in both infested and distal tissues, Arabidopsis thaliana L. rosettes were infested separately with the chewing herbivore Pieris brassicae L. and the piercing-sucker Tetranychus urticae Koch. Moderate infestation conditions were selected for both pests, though no quantitative control of damage levels was carried out. Feeding mode did distinctly influence the transcriptomic response of the plant under these conditions. Though overall affected processes were similar under either infestation, their magnitude differed significantly. Plants infested with P. brassicae exhibited a short-term response, involving stress-related genes, JA and ABA regulation and suppressing growth-related genes. In contrast, T. urticae elicited a longer transcriptomic response in plants, albeit with a lower degree of differential expression, in particular influencing SA regulation. These distinct defense responses transcended beyond infestation and through the roots, where hormonal response, flavonoid regulation or cell wall reorganization were differentially affected. CONCLUSION: These outcomes confirm that the existent divergent transcriptomic responses elicited by herbivores employing distinct feeding strategies possess the capacity to extend beyond infestation and even affect tissues that have not been directly infested. This remarks the importance of considering the entire plant's response to localized biotic stresses.


Assuntos
Arabidopsis , Borboletas , Animais , Transcriptoma , Herbivoria/fisiologia , Mastigação , Borboletas/fisiologia , Ácido Abscísico/metabolismo , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Ciclopentanos/metabolismo
6.
J Comp Neurol ; 532(2): e25579, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38204156

RESUMO

Extensive analysis of the flower-visiting behavior of a butterfly, Papilio xuthus, has indicated complex interaction between chromatic, achromatic, and motion cues. Their eyes are spectrally rich with six classes of photoreceptors, respectively sensitive in the ultraviolet, violet, blue, green, red, and broad-band wavelength regions. Here, we studied the anatomy and physiology of photoreceptors and second-order neurons of P. xuthus, focusing on their spectral sensitivities and projection terminals to address where the early visual integration takes place. We thus found the ultraviolet, violet, and blue photoreceptors and all second-order neurons terminate in the distal region of the second optic ganglion, the medulla. We identified five types of second-order neurons based on the arborization in the first optic ganglion, the lamina, and the shape of the medulla terminals. Their spectral sensitivity is independent of the morphological types but reflects the combination of pre-synaptic photoreceptors. The results indicate that the distal medulla is the most plausible region for early visual integration.


Assuntos
Borboletas , Animais , Borboletas/fisiologia , Células Fotorreceptoras de Invertebrados/fisiologia , Olho , Neurônios
7.
J Anim Ecol ; 93(2): 183-195, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38192015

RESUMO

Understanding how different organisms cope with changing temperatures is vital for predicting future species' distributions and highlighting those at risk from climate change. As ectotherms, butterflies are sensitive to temperature changes, but the factors affecting butterfly thermoregulation are not fully understood. We investigated which factors influence thermoregulatory ability in a subset of the Mediterranean butterfly community. We measured adult thoracic temperature and environmental temperature (787 butterflies; 23 species) and compared buffering ability (defined as the ability to maintain a consistent body temperature across a range of air temperatures) and buffering mechanisms to previously published results from Great Britain. Finally, we tested whether thermoregulatory ability could explain species' demographic trends in Catalonia. The sampled sites in each region differ climatically, with higher temperatures and solar radiation but lower wind speeds in the Catalan sites. Both butterfly communities show nonlinear responses to temperature, suggesting a change in behaviour from heat-seeking to heat avoidance at approximately 22°C. However, the communities differ in the use of buffering mechanisms, with British populations depending more on microclimates for thermoregulation compared to Catalan populations. Contrary to the results from British populations, we did not find a relationship between region-wide demographic trends and butterfly thermoregulation, which may be due to the interplay between thermoregulation and the habitat changes occurring in each region. Thus, although Catalan butterfly populations seem to be able to thermoregulate successfully at present, evidence of heat avoidance suggests this situation may change in the future.


Assuntos
Borboletas , Animais , Borboletas/fisiologia , Regulação da Temperatura Corporal , Temperatura , Temperatura Alta , Ecossistema , Mudança Climática
8.
Proc Biol Sci ; 291(2015): 20232305, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38228180

RESUMO

Environmental temperature fundamentally shapes insect physiology, fitness and interactions with parasites. Differential climate warming effects on host versus parasite biology could exacerbate or inhibit parasite transmission, with far-reaching implications for pollination services, biocontrol and human health. Here, we experimentally test how controlled temperatures influence multiple components of host and parasite fitness in monarch butterflies (Danaus plexippus) and their protozoan parasites Ophryocystis elektroscirrha. Using five constant-temperature treatments spanning 18-34°C, we measured monarch development, survival, size, immune function and parasite infection status and intensity. Monarch size and survival declined sharply at the hottest temperature (34°C), as did infection probability, suggesting that extreme heat decreases both host and parasite performance. The lack of infection at 34°C was not due to greater host immunity or faster host development but could instead reflect the thermal limits of parasite invasion and within-host replication. In the context of ongoing climate change, temperature increases above current thermal maxima could reduce the fitness of both monarchs and their parasites, with lower infection rates potentially balancing negative impacts of extreme heat on future monarch abundance and distribution.


Assuntos
Apicomplexa , Borboletas , Calor Extremo , Parasitos , Animais , Humanos , Borboletas/fisiologia , Interações Hospedeiro-Parasita , Apicomplexa/fisiologia
9.
Sci Rep ; 14(1): 1076, 2024 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-38212511

RESUMO

Egg deposition by herbivorous insects is well known to elicit defensive plant responses. Our study aimed to elucidate the insect and plant species specificity of these responses. To study the insect species specificity, we treated Arabidopsis thaliana with egg extracts and egg-associated secretions of a sawfly (Diprion pini), a beetle (Xanthogaleruca luteola) and a butterfly (Pieris brassicae). All egg extracts elicited salicylic acid (SA) accumulation in the plant, and all secretions induced expression of plant genes known to be responsive to the butterfly eggs, among them Pathogenesis-Related (PR) genes. All secretions contained phosphatidylcholine derivatives, known elicitors of SA accumulation and PR gene expression in Arabidopsis. The sawfly egg extract did not induce plant camalexin levels, while the other extracts did. Our studies on the plant species specificity revealed that Solanum dulcamara and Ulmus minor responded with SA accumulation and cell death to P. brassicae eggs, i.e. responses also known for A. thaliana. However, the butterfly eggs induced neoplasms only in S. dulcamara. Our results provide evidence for general, phosphatidylcholine-based, egg-associated elicitors of plant responses and for conserved plant core responses to eggs, but also point to plant and insect species-specific traits in plant-insect egg interactions.


Assuntos
Arabidopsis , Borboletas , Besouros , Himenópteros , Animais , Oviposição , Borboletas/fisiologia , Himenópteros/fisiologia , Arabidopsis/genética , Ácido Salicílico , Fosfatidilcolinas
10.
Glob Chang Biol ; 30(1): e17044, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37994481

RESUMO

Climate change is contributing to declines of insects through rising temperatures, altered precipitation patterns, and an increasing frequency of extreme events. The impacts of both gradual and sudden shifts in weather patterns are realized directly on insect physiology and indirectly through impacts on other trophic levels. Here, we investigated direct effects of seasonal weather on butterfly occurrences and indirect effects mediated by plant productivity using a temporally intensive butterfly monitoring dataset, in combination with high-resolution climate data and a remotely sensed indicator of plant primary productivity. Specifically, we used Bayesian hierarchical path analysis to quantify relationships between weather and weather-driven plant productivity on the occurrence of 94 butterfly species from three localities distributed across an elevational gradient. We found that snow pack exerted a strong direct positive effect on butterfly occurrence and that low snow pack was the primary driver of reductions during drought. Additionally, we found that plant primary productivity had a consistently negative effect on butterfly occurrence. These results highlight mechanisms of weather-driven declines in insect populations and the nuances of climate change effects involving snow melt, which have implications for ecological theories linking topographic complexity to ecological resilience in montane systems.


Assuntos
Borboletas , Neve , Animais , Estações do Ano , Borboletas/fisiologia , Teorema de Bayes , Tempo (Meteorologia) , Mudança Climática , Ecossistema
11.
Artigo em Inglês | MEDLINE | ID: mdl-38114856

RESUMO

In this paper, we take a historical perspective by going back to Verschaffelt's landmark study published in 1910, in which he found that glucosinolates were used as token stimuli by larvae of Pieris butterflies, specialist feeders on plants in the family Brassicaceae. This classic discovery provided key evidence for Fraenkel (Science 129:1466-1470, 1959) to elaborate on the function of secondary plant substances and for Ehrlich and Raven (Evolution 18:586-608, 1964) to put forward the hypothesis of insect-plant coevolution. The discovery by Schoonhoven (Kon Nederl Akad Wetensch Amsterdam Proc Ser C70:556-568, 1967) of taste neurons highly sensitive to glucosinolates in Pieris brassicae was an important milestone in elucidating the chemosensory basis of host-plant specialization. The molecular basis of glucosinolate sensitivity was elucidated recently (Yang et al., PLoS Genet 17, 2021) paving the way to unravel the evolution of gustatory receptors tuned to glucosinolates that are crucial for host-plant selection of Pieris butterflies. We propose a hypothetical model for the evolution of labeled-line neurons tuned to token stimuli.


Assuntos
Borboletas , Animais , Borboletas/fisiologia , Glucosinolatos , Insetos , Larva
12.
J Exp Biol ; 226(24)2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-37921078

RESUMO

The striking structural variation seen in arthropod visual systems can be explained by the overall quantity and spatio-temporal structure of light within habitats coupled with developmental and physiological constraints. However, little is currently known about how fine-scale variation in visual structures arises across shorter evolutionary and ecological scales. In this study, we characterise patterns of interspecific (between species), intraspecific (between sexes) and intraindividual (between eye regions) variation in the visual system of four ithomiine butterfly species. These species are part of a diverse 26-million-year-old Neotropical radiation where changes in mimetic colouration are associated with fine-scale shifts in ecology, such as microhabitat preference. Using a combination of selection analyses on visual opsin sequences, in vivo ophthalmoscopy, micro-computed tomography (micro-CT), immunohistochemistry, confocal microscopy and neural tracing, we quantify and describe physiological, anatomical and molecular traits involved in visual processing. Using these data, we provide evidence of substantial variation within the visual systems of Ithomiini, including: (i) relaxed selection on visual opsins, perhaps mediated by habitat preference, (ii) interspecific shifts in visual system physiology and anatomy, and (iii) extensive sexual dimorphism, including the complete absence of a butterfly-specific optic neuropil in the males of some species. We conclude that considerable visual system variation can exist within diverse insect radiations, hinting at the evolutionary lability of these systems to rapidly develop specialisations to distinct visual ecologies, with selection acting at the perceptual, processing and molecular level.


Assuntos
Borboletas , Animais , Masculino , Borboletas/fisiologia , Microtomografia por Raio-X , Evolução Biológica , Olho/anatomia & histologia , Opsinas
13.
Proc Biol Sci ; 290(2008): 20231616, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37817587

RESUMO

Life-history theory predicts that increased investment in traits related to reproduction will be associated with a reduced ability to invest in survival or longevity. One mechanistic explanation for this trade-off is that metabolic stress generated from current fitness activities (e.g. reproduction or locomotion) will increase somatic damage, leading to reduced longevity. Yet, there has been limited support for this damage-based hypothesis. A possible explanation is that individuals can respond to increases in metabolic stress by plastically inducing cellular maintenance responses, which may increase, rather than decrease, longevity. We tested this possibility by experimentally manipulating investment in flight activity (a metabolic stressor) in the migratory monarch butterfly (Danaus plexippus), a species whose reproductive fitness is dependent on survival through a period of metabolically intensive migratory flight. Consistent with the idea that metabolic stress stimulated investment in self-maintenance, increased flight activity enhanced monarch butterfly longevity and somatic tissue antioxidant capacity, likely at a cost to reproductive investment. Our study implicates a role for metabolic stress as a driver of life-history plasticity and supports a model where current engagement in metabolically stressful activities promotes somatic survival by stimulating investment in self-maintenance processes.


Assuntos
Borboletas , Humanos , Animais , Borboletas/fisiologia , Antioxidantes/metabolismo , Longevidade/fisiologia , Reprodução/fisiologia , Estresse Fisiológico
14.
J Exp Biol ; 226(21)2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37815453

RESUMO

Migration is an energetically taxing phenomenon as animals move across vast, heterogeneous landscapes where the cost of transport is impacted by permissible ambient conditions. In this study, we assessed the energetic demands of long-distance migration in a multigenerational ectothermic migrant, the monarch butterfly (Danaus plexippus). We tested the hypotheses that temperature-dependent physiological processes reduce energy reserves faster during migration than previously estimated, and that increasing climatic temperatures resulting from the climate crisis will intensify baseline daily energy expenditure. First, we reared monarchs under laboratory conditions to assess energy and mass conversion from fifth instar to adult stages, as a baseline for migratory adult mass and ontogenetic shifts in metabolic rate from larvae to adult. Then, using historical tag-recapture data, we estimated the movement propensity and migratory pace of autumn migrants using computer simulations and subsequently calculated energy expenditure. Finally, we estimated the energy use of monarchs based on these tag-recapture data and used this information to estimate daily energy expenditure over a 57 year period. We found support for our two hypotheses, noting that incorporating standard metabolic rate into estimates of migratory energy expenditure shows higher energy demand and that daily energy expenditure has been gradually increasing over time since 1961. Our study shows the deleterious energetic consequences under current climate change trajectories and highlights the importance of incorporating energetic estimates for understanding migration by small, ectothermic migrants.


Assuntos
Borboletas , Mudança Climática , Animais , Migração Animal/fisiologia , Borboletas/fisiologia , Larva , Metabolismo Energético
15.
Nat Commun ; 14(1): 6759, 2023 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-37903781

RESUMO

Although increased temperatures are known to reinforce the effects of habitat destruction at local to landscape scales, evidence of their additive or interactive effects is limited, particularly over larger spatial extents and longer timescales. To address these deficiencies, we created a dataset of land-use changes over 75 years, documenting the loss of over half (>3000 km2) the semi-natural grassland of Great Britain. Pairing this dataset with climate change data, we tested for relationships to distribution changes in birds, butterflies, macromoths, and plants (n = 1192 species total). We show that individual or additive effects of climate warming and land conversion unambiguously increased persistence probability for 40% of species, and decreased it for 12%, and these effects were reflected in both range contractions and expansions. Interactive effects were relatively rare, being detected in less than 1 in 5 species, and their overall effect on extinction risk was often weak. Such individualistic responses emphasise the importance of including species-level information in policies targeting biodiversity and climate adaptation.


Assuntos
Borboletas , Animais , Reino Unido , Borboletas/fisiologia , Ecossistema , Biodiversidade , Mudança Climática
16.
Oecologia ; 203(3-4): 311-321, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37889312

RESUMO

Parasitoids induce physiological changes in their herbivorous hosts that affect how plants respond to herbivory. The signature of parasitoids on induced plant responses to feeding by parasitized herbivores indirectly impacts insect communities interacting with the plant. The effect may extend to parasitoids and cause indirect interaction between parasitoids that develop inside different herbivore hosts sharing the food plant. However, this type of interactions among parasitoid larvae has received very little attention. In this study, we investigated sequential and simultaneous plant-mediated interactions among two host-parasitoid systems feeding on Brassica oleracea plants: Mamestra brassicae parasitized by Microplitis mediator and Pieris rapae parasitized by Cotesia rubecula. We measured the mortality, development time, and weight of unparasitized herbivores and performance of parasitoids that had developed inside the two herbivore species when sharing the food plant either simultaneously or sequentially. Plant induction by parasitized or unparasitized hosts had no significant effect on the performance of the two herbivore host species. In contrast, the two parasitoid species had asymmetrical indirect plant-mediated effects on each other's performance. Cotesia rubecula weight was 15% higher on plants induced by M. mediator-parasitized hosts, compared to control plants. In addition, M. mediator development time was reduced by 30% on plants induced by conspecific but not heterospecific parasitoids, compared to plants induced by its unparasitized host. Contrary to sequential feeding, parasitoids had no effect on each other's performance when feeding simultaneously. These results reveal that indirect plant-mediated interactions among parasitoid larvae could involve any parasitoid species whose hosts share a food plant.


Assuntos
Brassica , Borboletas , Vespas , Animais , Vespas/fisiologia , Interações Hospedeiro-Parasita , Larva/fisiologia , Borboletas/fisiologia , Herbivoria
17.
J Exp Biol ; 226(21)2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37818736

RESUMO

Using the monarch butterfly (Danaus plexippus), we studied how animals can use cues from multiple sensory modalities for deriving directional information from their environment to display oriented movement. Our work focused on determining how monarchs use gravity as a cue for oriented movement and determined how cues from other sensory modalities, cues that by themselves also produce oriented movement (visual and magnetic directional cues), might modulate gravisensation. In two tests of gravisensation (movement in a vertical tube; righting behavior), we found that monarchs display negative gravitaxis only (movement opposite to the direction of gravity). Negative gravitaxis can be modulated by either visual (light) or magnetic field cues (inclination angle) that provide directional information. The modulation of gravity-mediated responses, however, depends on the relationship between cues when presented during trials, such as when cues are in accord or in conflict. For example, when light cues that elicit positive phototaxis conflicted with negative gravitaxis (light from below the monarch), monarch gravisensation was unaffected by directional light cues. We also found that the antennae play a role in gravity-mediated movement (righting), as, with antennae removed, monarch movement behavior was no longer the same as when the antennae were intact. Our results demonstrate that monarchs can use and integrate multiple, multimodal cues for oriented movement, but that the use of such cues can be hierarchical (that is, one cue dominant for movement), and the hierarchy of cues, and the responses towards them when found together, depends on the physical relationships between cues during movement.


Assuntos
Borboletas , Animais , Borboletas/fisiologia , Sinais (Psicologia) , Migração Animal/fisiologia , Campos Magnéticos
18.
Neotrop Entomol ; 52(6): 1027-1040, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37819480

RESUMO

Butterflies have a wide spectrum of colour vision, and changes in flower colour influence both the visiting and nectaring (the act of feeding on flower nectar) events of them. However, the spontaneous behavioural response of butterflies while foraging on real flowers is less characterised in wild conditions. Hence, this study intends to investigate flower colour affinity in wild butterflies in relation to nectaring frequency (NF) and nectaring duration (ND). Six distinct flower colours were used to study spontaneous nectaring behaviour in 20 species of subtropical butterflies. Both NF and ND greatly varied in the flower colours they offered. Yellow flowers were frequently imbibed by butterflies for longer durations, followed by orange, while red, pink, white and violet flowers were occasionally nectared in shorter bouts. Though butterflies have a general tendency to nectar on multiple flower colours, the Nymphalids were more biased towards nectaring on yellow flowers, but Papilionids preferred both yellow and orange, while the Pierids were likely to display an equal affinity for yellow, orange and violet flowers as their first order of preference. Even if the blooms are associated with higher nectar concentrations or a significant grade reward, the butterfly may prefer to visit different-coloured flowers instead. Flower colour choice appears to be a generalist phenomenon for butterflies, but their specialist visiting nature was also significant. Nymphalid representatives responded to a wider variety of floral colour affinities than Pierid and Papilionid species. The colour preference of butterflies aids in the identification of flowers during foraging and influences subsequent foraging decisions, which ultimately benefits pollination success. The current information will support the preservation and conservation of butterflies in their natural habitats.


Assuntos
Borboletas , Néctar de Plantas , Animais , Borboletas/fisiologia , Cor , Flores/fisiologia , Polinização/fisiologia
19.
J Chem Ecol ; 49(11-12): 666-680, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37695522

RESUMO

Terpenes are a major class of secondary metabolites present in all plants, and long hypothesized to have diversified in response to specific plant-herbivore interactions. Herbivory is a major biotic interaction that plays out across broad temporal and spatial scales that vary dramatically in temperature regimes, both due to climatic variation across geographic locations as well as the effect of seasonality. In addition, there is an emerging understanding that global climate change will continue to alter the temperature regimes of nearly every habitat on Earth over the coming centuries. Regardless of source, variation in temperature may influence herbivory, in particular via changes in the efficacy and impacts of plant defensive chemistry. This study aims to characterize temperature-driven variation in toxicological effects across several structural classes of terpenes in the model herbivore Vanessa cardui, the painted lady butterfly. We observed a general increase in monoterpene toxicity to larvae, pupa, and adults at higher temperatures, as well as an increase in development time as terpene concentration increased. Results obtained from this study yield insights into possible drivers of seasonal variation in plant terpene production as well as inform effects of rising global temperatures on plant-insect interactions. In the context of other known effects of climate change on plant-herbivore interactions like carbon fertilization and compensatory feeding, temperature-driven changes in plant chemical defense efficacy may further complicate the prediction of climate change impacts on the fundamental ecological process of herbivory.


Assuntos
Borboletas , Terpenos , Animais , Borboletas/fisiologia , Herbivoria , Plantas , Temperatura , Terpenos/toxicidade
20.
PLoS One ; 18(7): e0288407, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37494406

RESUMO

Anthropogenic disturbance is driving global biodiversity loss, including the monarch butterfly (Danaus plexippus), a dietary specialist of milkweed. In response, ornamental milkweed plantings are increasingly common in urbanized landscapes, and recent evidence indicates they have conservation value for monarch butterflies. Unfortunately, sap-feeding insect herbivores, including the oleander aphid (Aphis nerii), frequently reach high densities on plants in nursery settings and urbanized landscapes. Aphid-infested milkweed may inhibit monarch conservation efforts by reducing host plant quality and inducing plant defenses. To test this, we evaluated the effects of oleander aphid infestation on monarch oviposition, larval performance, and plant traits using tropical milkweed (Asclepias curassavica), the most common commercially available milkweed species in the southern U.S. We quantified monarch oviposition preference, larval herbivory, larval weight, and plant characteristics on aphid-free and aphid-infested milkweed. Monarch butterflies deposited three times more eggs on aphid-free versus aphid-infested milkweed. Similarly, larvae fed aphid-free milkweed consumed and weighed twice as much as larvae fed aphid-infested milkweed. Aphid-free milkweed had higher total dry leaf biomass and nitrogen content than aphid-infested milkweed. Our results indicate that oleander aphid infestations can have indirect negative impacts on urban monarch conservation efforts and highlight the need for effective Lepidoptera-friendly integrated pest management tactics for ornamental plants.


Assuntos
Afídeos , Asclepias , Borboletas , Animais , Feminino , Borboletas/fisiologia , Herbivoria , Afídeos/fisiologia , Larva
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...